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In  the present paper we obtain a theoretical expression for the temperature 
fluctuation spectrum for a Prandtl number of approximately one and for the region 
where both viscosity and molecular heat conductivity are important. An asymptotic 
theory for very large wavenumbers of the temperature spectrum in the turbulent 
flow is developed. The assumption of smallness of the correlation coefficient between 
the product of small-scale components of velocities at  two points and the 
corresponding product of small-scale components of temperatures is used. The 
results of simultaneous measurements of streamwise velocity fluctuations and 
temperature fluctuations carried out in the plane of symmetry of a two-dimensional 
wake behind a slightly heated cylinder (BA = 270) in a wind tunnel is consistent with 
this assumption. 

The main result of the theory developed is the appearance of a bump in the 
temperature spectrum for a Prandtl number of approximately one. 

1. Introduction 
It is well known that for very large Reynolds numbers there exist universal spectra 

for velocity and passive-scalar fields in turbulent flow for the so-called equilibrium 
range of spectra (we neglect here the intermittency effects and consider our results 
to be for fixed values of velocity and scalar dissipation rate ; see, for example, Monin 
& Yaglom 1975). This range is characterized by parameters {E, v, x , N } .  Here, E is the 
rate of energy dissipation per unit of mass; v is the viscosity; x is the molecular 
coefficient of heat conductivity (or the molecular diffusion coefficient if the scalar is 
molecular density) ; and N is the rate of dissipation of mean-squared temperature 
fluctuations, i.e. N E x ( ( V T ) ~ > ,  where angle brackets denote an ensemble average. 

The general expression for the one-dimensional spatial temperature spectrum 
VT(k) obtained from dimensional analysis is given by the formula (see, for example, 
Monin & Yaglom 1975) 

VT(k)  = Ndk- t&(kq,  Pr) for kL >> 1. 

Here k is one component of the wave vector, Pr = v / x  is the Prandtl number, 

q = ( v 3 / 4  
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is the Kolmogorov scale of turbulence, L is the outer scale of turbulence, and q5, is 
a universal dimensionless function depending on dimensionless arguments. The 
Kolmogorov scale characterizes the inner scale of the velocity field. 

We also use the Corrsin scale: 

For Pr < 1, the Corrsin scale characterizes the range of the temperature spectrum in 
which the molecular heat conductivity is important. For Pr 2 1, Batchelor’s scale, 
qB, is the scale for which both viscous and molecular heat conductivity are effective : 

qB = (vxz/ /s)+ = q/Pri. 

Using scales L ,  q ,  vc,  and q B  we can classify the possible ranges of the temperature 
spectrum (see Batchelor 1959) : 

the inertial-convective range 

1/L < k 6 min ( l / q ,  l /vc) ,  

k % max (1/q, l /qB),  

l/rc 4 k 4 l/q for Pr < 1, 

the viscous-diffusive range 

the inertial-diffusive range 

the viscous-convective range 

l / q  < k < l /qB  for Pr 9 1 .  

I n  fact, the boundaries between these ranges are more accurately given by O.l/q, 
O.l/qc, and O . l / q B  respectively. 

For Pr B 1 or Pr < 1 only three of these four ranges exist. For Pr x 1 only the 
inertial-convective and viscous-diffusive ranges exist. 

In  the inertial-convective range the parameters v and x are not important, and for 
this case the following well-known formula is valid : 

V,(k) = MCZ, k-i = B,N/s-fk-:, CZ, = a2N/&, Ma2 =B, .  

Here a2 and B ,  are dimensionless constants (B,  is known as an Oboukhov-Corrsin 
constant), and M = r(5) sin (@)/(27c) = 0.1244. This formula was first obtained by 
Oboukhov (1949) in terms of structure functions (Oboukhov’s law for temperature 
fluctuations) : 

The quantity N = x ( ( V T ) ~ )  = -$@/at )  ( T 2 )  as a rate of dissipation of temperature 
fluctuations was first introduced by Oboukhov (1949). The same formula was 
obtained in a somewhat different way by Yaglom (1949). A bit later the formula for 
V , ( k )  was independently obtained by Corrsin (1951) (Corrsin’s -g law, which is the 
spectral equivalent of the 2 law). 

A common description of both the viscous-convective and viscous-diffusive 
ranges was proposed by Batchelor (1959). Using some simple natural physical 
assumptions about the interaction between small-scale velocity field components (in 
the viscous range of its spectrum) and the temperature field, he obtained, for v % x 
(Pr % 1)  for the viscous-convective range l / q  < k < l /qB, 

~,p)  = ( (T,-T,)~)  = CZ,ri. 

VT(k) = ~ N 7 ~ k - l  for l / q  4 k Q 1 / v B .  
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Here 70 = (v /e ) i  is the Kolmogorov inner scale for time and q is a dimensionless 
constant. Batchelor’s first estimate of q was q x 2. The constant q in fact is a free 
parameter in Batchelor’s theory. It determines the intersection point k ,  of the -% 
and - 1 asymptotic solutions : 

k*r  = (BT/q):. 

Grant et al. (1968) estimated the value of p as p = 3.9+ 1.5, for k, = 0.024+0.008 
(Pr = 9.4, water) ; Gibson, Lyon & Hirschsohn (1970) obtained a similar estimate for 
k, T,I = 0.035 k0.005 (Pr = 700). 

Note that the -% and -1  laws have been experimentally verified with high 
precision for different Prandtl or Schmidt numbers?. 

If we look at  experimental data for air (Pr = 0.72) (see, for example, Hill’s 1978a 
review), we see that between the inertial-convective and the viscous-diffusive ranges 
there exists a ‘bump ’. Some optical and underwater propagation features caused by 
the bump have been analysed by Gurvich, Kallistratova & Martvel (1977), Hill & 
Clifford (1978), Hill (1978b), and Elliot, Kerr & Pincus (1979). 

At first sight, this bumk resembles Batchelor’s range of the spectrum, but it exists 
for Pr x I ,  which is not described by his theory. It is impossible to explain this bump 
on the basis of asymptotic theories, which use the limit Pr+ co or Pr+O (such as 
Gibson’s 1968 theory, which is based on similarity analysis and because of this is an 
asymptotical theory with respect to the Prandtl number). 

Different phenomenological theories have been used to explain the bump (Hill 
1978a, c ,  1980). They all used speculative models of interactions between different 
spectral components of temperature fluctuations. For example, the equation 

W ( k ) / a k  = - 2 x k 2 r ( k )  

was used, where I-‘( k) is the three-dimensional temperature spectrum multiplied by 
4nk2, and aF(k)/ak = - T(k) is an unknown spectral transfer function, connected 
with the third mixed moment of velocity and temperature. Different functions 
(analytical expressions) for P(k)  were proposed, which are compatible with the -8 
and - 1 asymptotical solutions and contain several numerical parameters. It is 
possible to choose these functions and parameters such that the r(k) obtained 
describes the experimental data very well. But from an ideological point of view it 
is the same as choosing a good analytical approximation directly for r(k). If we have 
such an approximation for r(k), we can obtain F ( k )  from the same equation. 

In the present paper our goal is to obtain a theoretical expression for the 
temperature fluctuation spectrum for Pr x 1 (for air it is approximately 0.72). In this 
simplest case only the inertial-convective and viscous-diffusive ranges exist. 

To obtain the general form of an asymptotic solution of the temperature spectrum 
for the high-frequency spatial components, we use the equation for the high- 
frequency (space-time) temperature correlation function, which is similar to the 
Chandrasekhar equation for the velocity field. In the case of the velocity field, similar 
assumptions make it possible to obtain good agreement between the theoretical and 
the experimental results in the viscous range of the spectrum (see Dubovikov & 
Tatarskii 1987). 

After matching this asymptotic solution for the temperature spectrum with the -8 
t Note that the numerical simulation of Lesieur t Rogallo (1989) for Pr x 1 leads to the k-’ 

behaviour of the spectrum for small-scale temperature components (for the range between the 
outer scale and the -Q low range). We do not know of any experimental evidence for similar 
behaviour of the temperature spectrum in this range. 
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law we will obtain the composite asymptotic solution for the whole range. In the case 
of temperature fluctuations for Pr w 1 it leads to the bump in the spectrum. 

The theoretical results in this paper are due to V. Tatarskii and M. Dubovikov, the 
experimental results of $3 are due to A. Praskovsky and M. Karyakin. 

2. Basic equation 

velocity field : 
We start from the heat transport equation in a given incompressible turbulent 

(where summation is over repeated indices). Here Q represents the heat sources, 
which are concentrated in the region of small wavenumbers and small frequency. Let 
us introduce the Fourier transforms 

T(k,w) = ( 2 7 ~ ) - ~  exp[-i(k.r-wt)] T(r,t)d3rdt, s 
I 

s 

Q(k, w )  = (27t)-4 exp [ - i(k. r-wt)] Q(r,  t) d’rdt 

and suppose that 

Let us also introduce a function S(r,  t )  such that its Fourier transform, 

Q(k,w) = 0 if Ik( > k,, w > w,. 

S(k, w )  = ( 2 ~ ) - *  exp [ -i(kr-wt)]S(r, t)  d3rdt, 

is equal to zero for the region Ikl < k,, IwI < w, and equal to one for (kl S= k,, (01 S= wo. 
In this case 

S(k, w )  &(k, w )  E 0. 

Then if we multiply the heat transport equation by S(r-r’ ,  t- t ’ )  and integrate over 
r , t ,  the term 

&(r,t)S(r-r’,t-t’)drdt 0 s 
vanishes, because the convolution of the functions corresponds to the product of the 
spectra and S(k, w )  Q(k, w )  z 0. 

Let 

[T(r,  t)]’ = S(r-r’,  t - t ’ )  T(r’, t’)dr’dt’ J 
denote the small-scale component of the temperature field. We also use the [ I ’  
notation to denote the small-scale components of the other functions. We call this 
operation filtering. The filtered heat transport equation takes the form 

a[ T]’/at - x A[ TI’ = - [ ~ ( r ,  t )  * VT(r, t ) ] ’  

(because 0 = 0). Now we write the same equation for the other (r ,  t)  point, multiply 
these two equations, and average the product : 

(a/at,-XA,)ca/at,-XA2)([Illll’[T,l’) = ( [v3( l )a~/ax ,~ l”~ , (2)a~/a~ , , l ’ ) .  (2.2) 
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We denote <[TJ [ T,]’) E BT the high-frequency correlation function, and assume 
that the high-frequency components of T are statistically homogeneous and 
stationary. In this case BT = BT(p,t), where p = rl -r2, t  = tl-t2, and 

The equation obtained takes the form 

For statistically homogeneous and statistically stationary turbulence this equation 

If tc and T are considered Gaussian and statistically isotropic, the exact relation 
is exact, but not closed. 

is valid. The deviations from this relation are caused by non-Gaussian terms, and 
they are proportional to the third- and higher-order cumulants. 

The main assumption used in this paper is that it is possible to use the same 
relation as an approximation but only for the small-scale components of turbulence. 
(It is known, see O’Brien & Francis 1963, that this assumption leads to negative 
values in the large-scale range of the spectrum. In our case, i.e. small-scale 
components, we do not have this difficulty.) It is also known (see Antonia et al. 1984) 
that the tails of the probability distribution for the difference between the 
temperatures at two spatial points are essentially non-Gaussian. This is very 
important for calculations of high-order structure functions, but since we use this 
approximation for the second moment only we can expect that the relative error of 
this relation will not be too big. 

Section 3 describes the experiment carried out to verify this assumption. The 
measurements do not contradict the assumption, with an accuracy of about 10%. 

Thus, if we suppose that the relation 

is valid, (2.3) takes the form 

Here B,,(p, t) is the correlation tensor for the small-scale components of the velocity 
field. For the isotropic case we can represent B,,(p,t) in terms of the longitudinal 
correlation function BLL, resulting in the equation 
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Here B,, is the filtered longitudinal velocity correlation function, and dimensionless 
variables 

7 = (e/v)"f,--t,),  p = l r l - r 2 l / V  

are used. We use the notation a for the inverse Prandtl number: 

a = x / v  = (Pr)-'. 

The estimates based on the diagram technique (similar to the technique of 
Dubovikov & Tatarskii 1987) show that deviations from (2.4) increase for Pr % 1. 
Thus we can suppose that (2.4) is valid for Pr z 1 only. 

A similar closure idea was used by O'Brien & Francis (1963) to investigate the 
evolution of the scalar spectrum in the decay process : they obtained negative values 
for the spectrum in the large-scale range. Our approach uses a similar quasi-Gaussian 
approximation for small-scale (space-time) components only, and (2.6) describes not 
decay, but stationary small-scale turbulence. 

A similar approach for the velocity field (Dubovikov & Tatarskii 1987) led to  good 
agreement with experimental data in the viscous range of the turbulent spectrum. 
Because of that result, we attempted to use a similar approach for the temperature 
field. 

3. Experimental verification of a closure hypothesis 
The aim of this section is to  present experimental data for the quantities on both 

sides of (2.4) and to examine the relative accuracy of the equation. 
Many experimental papers contain joint measurements of velocity and tem- 

perature fluctuations, but we could not find results in the literature directly 
concerning the quantities in (2.4). The results in some papers (Antonia & Van Atta 
1975; Antonia & Chambers 1980; Park 1976) are useful for estimating the accuracy 
of this relationship. 

We present in this section some preliminary estimates of the following quantities 
(where u is the streamwise component of velocity fluctuations, T is the temperature 
fluctuation, and Tx is the streamwise derivative of temperature) : 

All the quantities in (3.1)-(3.3) were measured in frequency bands ranging from a 
low-cutoff frequency fmin up to high cutoff frequency f, for different values of fmin. 

We can expect on the basis of results of Antonia & Van Atta (1975) and Antonia 
& Chambers (1980) that p(r) and y( r )  will decrease with decreasing r and become very 
small for r z 7. If that is so, it means that the hypothesis that y = 0 to  achieve 
closure in the equation for the temperature second moment in the viscous-diffusive 
range does not contradict experimental data. 

The experiment was carried out in a low-turbulence direct-flow wind tunnel. The 
flow behind a vertical, electrically heated cylinder (length 350 mm, diameter 35 mm) 
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was analysed. The measurements were carried out in the tunnel cross-section at a 
distance x /d  = 42.9 behind the cylinder. The velocity of the external flow was 
13 m/s; the Reynolds number was 3 x lo4. 

We used two platinum Wollaston 0.63 pm wires with active length b = 0.25 mm. 
The distance between wires was h = 0.8 mm. One wire was used as a hot-wire 
anemometer operating a t  constant temperature (the relative heating was 1.6) ; the 
other one was used as a resistance thermometer. The hot-wire anemometer output 
signal, u( t ) ,  and the thermometer output signals T ( t )  and T,(t) (T , ( t )  = aT/at) were 
passed through the low-pass filters (high cutoff frequency f, = 8 kHz at 36 dB/ 
octave). To obtain the time derivative T,(t), we used an analogous differentiator with 
linear characteristics in the band up to 16 kHz. The r.m.s. signal-to-noise ratio levels 
in the plane of symmetry of the wake was 270 for velocity fluctuations, 43 for 
temperature, and 8 for T,(t). 

To obtain the spatial characteristics from our temporal measurements we used the 
Taylor frozen-turbulence hypothesis. To estimate the mean value of the energy 
dissipation rate ( E )  and the scalar dissipation ( N ) ,  we used the local isotropy 
hypo theses, i .e . 

(€) = m ( ( a U / a x y ) ,  ( N )  = 3 x < ( a ~ / a x ) z ) .  

The integral scale L ,  Taylor's microscale A, and Kolmogorov's scale y were 
estimated by 

All the results presented in this section were obtained a t  a single point : in the plane 
of symmetry of the wake behind the cylinder. The mean values of energy dissipation 
and scalar dissipation rate were ( E )  = 17.2 m2/s3 and ( N )  = 0.266 K2/s. The 
turbulence scales were L = 55.1 mm, 7 = 0.12 mm (i.e. L / y  = 460), and h = 3.83 mm. 
The Reynolds number was R, = (v2) ;h/v  = 270. The spatial resolution of the 
measurements was b/q = 2.1 for independent velocity or temperature measurements. 

An inertial range of about one decade was obtained in our experiment : 0.005 < ky 
< 0.1 ) which is natural for R, x lo2. Note that to get a high R, value, measurements 
were carried out a t  a relatively small distance from the cylinder (x = 42.9d), i.e. in 
a not fully developed part of the wake. Thus the scale y is small and the ratio h/y  is 
relatively big. But we consider only the inertial range r > 107 where the spatial 
averaging h/v = 6.7 is not so important. 

We note also that near the cylinder the fluctuation structure is determined by the 
shedding of regular vortices (see, for example, Sarpkaya 1979). But these regular 
vortices correspond to small wavenumbers, and therefore they do not seem to be 
important for flow fluctuations in the region of high wavenumbers. We did not 
observe any peaks in the spectra of velocity and temperature a t  ky x 3.8 x 
which corresponds to the Strouhal number of vortex shedding, S = fd/U, x 0.16. 

Measurements of P ( r ) ,  y( r ) ,  and p( r )  were carried out for three different values of 
the low cutoff frequency, fmin: 0 Hz (without filtering), 150 Hz (V/27rfdny = l06), 
and 1500 Hz (V/27rfminy = 10.6). Values of ( u ( x ) u ( x + r ) )  and <T(x)  T ( x + r ) ) ,  and of 
the fourth moment ( u ( x )  u(x+r)  T(z) T ( x + r ) )  are different for different values of 
fmin, but normalized values of /3(r), y( r ) ,  and p ( r )  are essentially similar. For example, 
the measured values of these quantities are presented in table 1, for r = 157. For 
r / q  > 30, the difference between the values of P ( r )  for these three values of fmin is less 
than 1 YO. Taking into account that there is no essential difference in the measured 
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FIQURE 1. The 

h L 

- 3.0 
1 .o 1.5 2.0 2.5 3.0 

1% r l l r  

and Taylor microscale of turbulence. 
results of measurements of P(r ) ,  y ( r ) ,  and p ( r ) .  The arrows mark the outer scale 

f,,, = 0 Hz fmin = 1500 Hz 
(44 4 s  + T ) )  (m2/s2) 1 .oo 0.391 
(T(4 T ( z + r ) )  ("C2) 0.105 0.0408 
(u(z) u(s+ r )  T(s) T ( s + r ) )  (K2 mz/sz) 0.106 0.0161 
logP(r)  -2.17 - 2.14 

TABLE 1. Correlation values for two different cutoff frequencies 

values of /3(r), y ( r ) ,  and p ( r )  for different fmin, we present below the results for 
fmin = 0 only. 

Figure 1 presents the results of measurements of /3(r), y ( r ) ,  and p( r ) .  We cannot 
estimate their values for r < h, but it is obvious that all of these quantities decrease 
if r decreases, and the rate of decrease for p(r )  and y(r )  is greater for r < A than for 
r 2 A. For r = 107 the measured results are p = 2 x which does not 
contradict hypothesis (2.4). 

Unfortunately, the relatively large distance between the wires in the experiment 
makes it impossible to verify this hypothesis in the viscous-diffusive range for r < 
lor. Also, the Reynolds number was not large enough. Therefore it would be useful 
to plan additional measurements with Reynolds numbers R, > lo3 and with spatial 
resolution b < 7, h < 7. 

A priori, it was possible to obtain a value for y of about unity, and in that case 
hypothesis (2.4) and all the conclusions based on it make no sense. On the other hand, 
experimental results obtained cannot be considered as evidence of the validity of 
(2.4). We can consider the result obtained as only a first estimate of the value of y ,  
and this estimate does not contradict the hypothesis used. 

y = 4 x 
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4. Investigation of singularities of the temperature correlation function in 
the complex pplane 

Our next problem is to investigate the asymptote of the spatial temperature 
spectrum in the region of high wavenumbers. We investigate this spectrum in the 
viscous region of the velocity spectrum, which was obtained by Dubovikov & 
Tatarskii (1987). In Batchelor’s (1959) terms it is the viscous-diffusive range. 

It is known that the asymptotic form for the spectrum for large k is determined 
by the singular point of the correlation function nearest to the real axis. Thus we 
begin now to investigate the singularities of B,(p, 7) on the complex p-plane. 

The function B,(p, 7) obeys the differential equation (2.6). It is known that all the 
singular points of the solution of this equation coincide with the singular points of the 
equation coefficients. 

The coefficients of (2.6) are singular at  two points: the first is p = 0; the second is 
the point where the function BLL (p, 7) is singular. In our previous paper (Dubovikov 
& Tatarskii 1987) we found that the function B,,(p, 7 )  has a singularity at the point 
p = ip0(7), which is nearest to the real axes. 

First we investigate the singularity at p = 0. The most singular term in the 
expansion of B,(p, 7) near this point is in the form 

&(p, 7 )  = 47)/pP. 

If we substitute this term into (2.6) and take into account that function B,,(p, 7) is 
regular at this point, we obtain p = 1. This means that the corresponding term in the 
one-dimensional Fourier transform has the form Const x A(7)  In k. But for finite 
Prandtl number (x $: 0) the integral of the one-dimensional spectrum over the 
large-k region is finite, and therefore we must set Const = 0. Thus, the singularity at 
p = 0 is not essential for the asymptotic form of the spectrum. 

Now we investigate the second singularity, at p = ipo(7). Dubovikov & Tatarskii 
(1987) showed that the behaviour of B,,(p, 7 )  near this point has the form 

According to the general theory of differential equations, we seek a solution for 
B,(p,7) near the singular point p = ip0(7) in the form 

If we substitute expansions (4.1) and (4.2) into (2.6) and compare the coefficients 
of the same powers of [p-ip0(7)], we obtain (after rather extended algebra) the 
following relations : 

(4.3) 

Note that the term a2B,/W in (2.6) has no effect on the quantities p and a1(7) 
because it is connected with the singularities of lower order. This means that the time 
shift 7 appears in ,u and a1(7) only as a parameter (no derivatives with respect to 7 

arise). We can set this parameter to zero. It corresponds to consideration of a pure 
spatial temperature correlation function and spectrum. We obtained the same result 
(Dubovikov & Tatarskii 1967) for the function B,,(p, 7) near its singular point p = 
ip0(7). The parameter po(0) = E was estimated as 

(4.4) E = p,(O) x 10.85. 
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This estimate is rather stable and is in good agreement with the experimental data. 

p = g [ l +  120(Pr)2]i-3}. ( 4 . 5 ~ )  

On the basis of (4.3) we obtain, for the positive root p, 

It is clear from (4.5a) that  a positive root exists only for 

Pr 2 (15)-; x 0.258. 

If this condition is not fulfilled, we must choose the negative root 

p' = - g [ ~ +  I Z O ( P ~ ) ~ ] + + ~ } ,  (4.5b) 

which corresponds to the branch point with a positive exponent. 
After substituting (4.4) into (4.3) we obtain for the coefficient a, = a,(O) 

a, = #49-2p)/[13&4- 1)l. (4.6) 

Thus, the behaviour of the function B(p)  = B,(p, 0) in the neighbourhood of the 
singular point p = ip,(O) = i5 is given by the formula 

(4.7) B(p)  = (p  - i&p + ia,(p - it)-"" + . . . . 

5. One-dimensional asymptotic form of the temperature spectrum for the 
viscous-diffusive range 

We consider here the one-dimensional spatial temperature spectrum because this 
function is usually measured in direct experiments. We use the following definition 
of the spectrum : 

= ( Z W ' S _ b  exp (ikP)B(P) dP. (5.1) 

(All the definitions and notation coincide with those used in Tatarskii 1971.) If we 
substitute the expansion (4.7) into (5.1) and calculate integrals (it is also possible 
to  use Watson's lemma), we obtain the asymptotic expansion for the spectrum for 
large k : 

V,(k) = [T(p)]-' cos @cp) exp ( - k() kp-' [ 1 + (p- 1) a, k-' + . . .I. 
Note that (3.5) is linear with respect to B , ( ~ , T ) ,  so its spectrum V,(k) contains 

some unknown factors. These factors must be determined from additional 
information or from the experimental data. We denote this coefficient by D,,  and 
using (4.6) for a,, we obtain for V,(k) the following expansion: 

V,(k) = D,exp (-kt)  k#-l{l +p(9-2p) (13()-lkp1+. . .}. (5.2) 

Now we must estimate the matching point between this asymptotic formula and 
the -! law. For this estimate we use the well-known relation (in which the variables 
have natural dimensions) 

4Jomk2V,(k)dk = -. 2N 

331 
(5.3) 

It is well known that in the inertial-convective range the functions D(r )  and V,(k) 
have the form (using the dimensional variables) 

D(r) = CZ,r:, V,(k) =MCZ,k-i, 

where C$ = a2N/d, M = r(5) 3:/(4x) = 0.1244.. . , and u2 is a numerical constant. 
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In general it is possible to represent VT(k) in the form 

VT(k) =MC2,k-$bl(kq), (5 .4)  

where the subscript 1 in #,(kV) denotes that it is a one-dimensional spectrum. 
It is clear that #,(Icy) w 1 for kq 4 1,  but it must have a form for kv S 1 such that 

(5.2) is valid. If we return to the dimensionless variables, we obtain the following 
asymptotic formulae for $,(k) : 

for k 4 1 

for k >> 1 .  
( 5 . 5 ~ 4  b) D exp ( - k6) k@+i[ 1 + p ( 9  - 2p)  (13g)-lk-l+ . . .] 

Here D is a new constant, which is the ratio of the constants in (5.2) and (5.4). 
We assume that it is possible to choose, for these two asymptotic expressions, a 

matching point K such that for k < K (5.5 a )  is valid, but fork > K (5 .5b)  is applicable. 
If we introduce the step function 

0 for x < 0 { 1 for x > 0, 
0(x) = 

it is possible to rewrite $,(k) in the following form: 

#,(k) = O ( K - ~ )  +O(k-K)Dexp ( -  kc) P+i[l +p(9-2p)  (13[)-' K-' + . . .]. ( 5 . 5 ~ )  

We next wish to choose the point K .  We first substitute (5.4) into (5.3). Again using 
the dimensionless variables, we obtain the equality 

1 
k$l(k) dk = - 

6 d a 2  ' 

If we use ( 5 . 5 ~ )  in (5.6), we get after integration 

$K$ + Dt-;-(P+') [ f  (p + 2 ,  K [ )  + &u( 9 - 2p)  r ( p  + 1 ,  K [ )  + . . .] = 1 /( 6 d u 2 ) .  (5.7) 

Here f ( a , x )  = t"-'exp(--t)dt JZrn 
is the non-complete gamma function. 

Equation (5 .7)  connects the two unknown constants D and K .  A second equation 
we can use is the spectrum continuity condition at  the point K .  It is the same as the 
continuity condition for the function $,(k) : 

(5 .9)  

We can consider (5.7) and (5.9) as a system of transcendental algebraic equations 
for the unknown constants D and K .  This system of equations can be analysed 
numerically. A similar approach was used by Gibson (1968) and Dubovikov & 
Tatarskii (1987). 

The important parameters of the system are the Prandtl number Pr and, 
depending on it, constants a, p ; the constant a2 in the temperature law ; and the 
number 6, which characterizes the velocity spectrum in the viscous range. 

First, we note that the system of equations analysed does not have a solution for 
all values of the parameters. The numerical constant 6 was determined by Dubovikov 
& Tatarskii (1987) with good accuracy, and its value of 10.85 was used for further 
calculations and did not vary. The main calculations were made for air, which is 
characterized by the parameters P r  = 0.72, a = 1.39, p = 2.48. 

1 = D exp ( - ~ 6 )  KP'" 1 + p ( 9  - 2p) ( 1 3 E p P  + . . .]. 
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FIGURE 2. A set of curves illustrating the dependence of the function $,(k) on the value of as for 
fixed Pr = 0.72 and 6 = 10.85. The upper curve corresponds to as = 2.4, the lower one to as = 2.8, 
intermediate values are 2.5, 2.6, 2.7. 

For the values of these constants considered, a solution of the system of equations 
exists only for a2 < 2.8. Note that this critical value of a2 belongs to the range of a2 
values possible from the experimental point of view. 

For a2 < 2.8 in the region k > K on the curve $1 = $ l ( k ) ,  the spectral bump 
appears. The bump has been obtained in many experiments: Champagne et al. 
(1977), Williams & Paulson (1977), and Time (1981). 

One of the first estimates of a2 (Tatarskii 1956) was a2 = 5.6, but many of the more 
recent measurements indicate a large range of values: from 1.1 to 9 (see Yaglom 
1981). To obtain good agreement between the experimental values for the bump and 
theory, it is necessary to choose the value a2 = 2.3 (see $ 6  of this paper). This value 
belongs to the range of observed values of a2. 

The bump’s value and position also depend on the Prandtl number. If the F’randtl 
number increases, the bump in the spectrum moves to the region of large 
wavenumbers. For example, the position of the bump’s maximum is k, = 0.10 for 
Pr = 0.4, k, = 0.27 for Pr = 0.72 and k, = 0.42 for Pr = 1.  

In figure 2 the curves presented illustrate the dependence of the function $, (k)  on 
the value of a2 for fixed p and 6. Using these curves, we can choose the best value of 
a2 from the point of view of experimental values for the bump. 

6. Comparison of asymptotic theory results with experimental data 
Various experimental data on the temperature fluctuation spectra in the 

viscous-diffusive range have been obtained in wind tunnels, in the atmosphere, and 
in the ocean (see Champagne et al. 1977 ; Williams & Paulson 1977 ; Time 1981 ; and 
Hill’s 1978a review). Some of these measurements were made by different, small, 
low-inertial devices ; others were made by non-direct methods (see Tatarskii 1971) 
based on measurements of the spectra of fluctuations of light intensity and on the 
angle of wavefront arrival. Note that Gurvich et al. (1974) gave the first indications 
of the bump’s existence, but their data were not accurate enough to affirm it. 
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FIQURE 3. The function ~ $ ~ ( k ) ,  calculated according to (5.5c), for the parameters 6 = 10.85, Pr = 
0.72, a2 = 2.3, D = 1323, K = 0.1715. The maximum of #,(k) is located at  the point k, = 0.274 and 
#l(k,) = 1.351. The data points are experimental values from Champagne et al. (1977), normalized 
according to the condition #,(O) = 1. The maximum of the experimental curve is at  k, = 0.1 and 
q51(ko) = 1.34. 

The function q51(k), calculated according to (5.5), is presented in figure 3 for the 
following values of the parameters: 6 = 10.85, Pr = 0.73, u2 = 2.3. The values of 
parameters D and K ,  obtained from the solution of the system of equations (5.7) and 
(5.9), were D = 1323, K = 0.1715. The maximum of #,(k) is at  the point k, = 0.274 
and +l(ko) = 1.351. 

The experimental data, presented on the same plot, were taken from Champagne 
et uZ.'s (1977) paper and normalized according to the condition #1(0) = 1. These data 
are typical for such measurements. The q51(ko) value of the maximum on the 
experimental curve is 1.34 and coincides with the result from calculations (due to the 
choice of u2 = 2.3). But for the experimental points the position of the maximum is 
k, = 0.1 ; i.e. it is in the region of the largest scale rather than at the maximum of the 
theoretical curve. 

The most likely reason for the difference in the bump position for the theoretical 
result compared with the experimental data is inadequate accuracy of the asymptotic 
expansion (5.2), in which we used only two terms. To elucidate this, we consider the 
value k = kmm, which corresponds to the maximum of #l .  It is given by 

kgL = { 13 + 3p(p + 2) + [9p4 - 198,~' + 1 2 4 5 , ~ ~  - 195p + 169$}/( 395). (6.1 ) 

The superscript (2) means that we used the two-term formula (5.2) for the 
temperature spectrum and the corresponding two-term formula (5.5) for q51. But if we 
neglect the second term in (5.6), 

[l +p(9 - 2p) (136)-'k-' + . . .I, 
we get the corresponding one-term formula for kgLx: 

(6.2) k(1) = 
max @+bI/E. 

For a given P r ,  (6.2) leads to bigger values of k,, than does (6.1). For example, 
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lcgLx = 0.27 and kgLx = 0.29 for Pr = 0.72 and 6 = 10.85. This means that refining 
the asymptotic expansion from the one-term formula to the two-term one shifts the 
maximum position in the correct direction. 

The real expansion parameter used is (kE)-', and it is about unity in the region of 
the bump. It is well known that in this case it is rather difficult to improve the results 
of the asymptotic expansion by means of increasing the number of terms. This might 
explain the quantitative difference between the theory presented and the 
experimental data. But a t  the same time it seems that the accuracy of the basic 
equation (2.6) is much greater than the accuracy of its approximate solution (the 
asymptotic expansion). 

7. Conclusion 
An asymptotic theory is developed for the temperature field in turbulent flow with 

very large Reynolds numbers and Prandtl number of about one, with the goal of 
describing tPe viscous-diffusive range of the spectrum. 

The basic assumption of our approach is that the correlation coefficient for the 
product of small-scale components of velocity and small-scale temperature 
fluctuations, for a pair of points separated by a distance on the order of the 
Kolmogorov scale, is small. This assumption about the mixed fourth-moment 
behaviour is not contradicted by the results of our experiments in a wind tunnel. The 
result of Dubovikov &, Tatarskii (1987) for the asymptotic form of the velocity 
spectrum in the viscous range is used. 

The theoretical results show that a bump appears between the inertial-convective 
and viscous-diffusive ranges of the spectrum for Pr x 1, as observed in many 
experiments (it is necessary to distinguish this bump from the one that appears 
according to Batchelor's k-l law for Pr B 1). 

Hill's (19784 review compares experimental results with several phenomeno- 
logical theories. In  these theories different formulae are proposed to describe the 
mixed third moment. Using these formulae, it is possible to close the second-moment 
temperature equation and to  solve it. The resulting expression depends on the 
functions and the free parameter chosen for the closure approximation. It is possible 
to choose them in such a way that the agreement between the experimental results 
and the results of calculations is quite satisfactory in a wide range of spatial 
frequencies, including the bump. 

As we mentioned in 9 1, this approach is equivalent to the direct approximation of 
the experimental data by means of analytical expressions. We do not know of any 
other approach that is able to describe the spectral behaviour, including the 
appearance of the bump, in the viscous-diffusive range when the Prandtl number is 
approximately one. 

In  contrast to the models reviewed by Hill (1978a), the method developed here 
does not use arbitrary suppositions about the spectral transfer function, but is based 
on a simple closure model that does not introduce any free parameters to the 
solution. It leads naturally to the appearance of the bump in the temperature 
spectrum. 

The quantitative disagreement between the theory and experimental data for the 
position of the bump is not very great, and is more likely to be due to the inaccuracy 
of the asymptotic expansion (5.2) than the inaccuracy of the basic equation (2.6). 
This means that it is possible to improve the results by using some other methods to 
solve this equation. 
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We cannot, also, exclude the influence of intermittency. As noted by Keller & 
Yaglom (1970), these effects are very important in the extreme short-wave region 
ky + 1 of turbulence. 

We are grateful to Dr R. Hill, Dr J. C. Kaimal, and reviewers for useful comments 
and discussion. One of us (V. I. T) is grateful to the US National Research Council for 
partial support of this work. 
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